The Science Behind a Beautiful Aircraft Takeoff

As you’re relaxing into your seat, waiting for takeoff, the focus in the flight deck is at its peak. The culmination of the last two hours of briefings and checks is almost upon us. The flashing white strobes on the wingtips and tail are turned on and the bright landing lights illuminate the path ahead.

One final check of the approach path to confirm there’s no aircraft landing. At 226 tonnes, we’re almost at our maximum takeoff weight, but the Boeing 787-9 glides effortlessly onto the runway. The strip of lights ahead of us disappear 4 kilometres into the distance. We pause. Breathing slowly. Focused. Waiting for the call from ATC.

“Flight 254, runway two four left, wind 280 degrees at 8 knots, you’re cleared take off”.

“Cleared take off 24L, Flight 254”.

The pilot flying (PF) squeezes the thrust levers slightly forwards, advancing the engines to around 20% of their maximum power. Another pause as we hear the engines spool up. All three pilots scan the engine instruments for any anomalies. Satisfied, the PF uses their index finger to press the Take Off/Go Around (TOGA) button.

With a whir of an electric motor, the auto throttle advances the thrust levers forward and sets the takeoff power. With a reassuring whine, the two massive engines under the wings are woken from their slumber. Forcing 65,000 pounds of thrust out of the back of each engine, the 787 Dreamliner starts to pick up speed.

To read the full article on The Points Guy, click here.

Alternatively, click here for a .pdf version